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4 HSC PHYSICS MODULE 5 WEEK 4

Syllabus Content

Motion in Gravitational Fields
• Apply qualitatively and quantitatively Newton’s Law of Universal Gravitation

to:
– determine the force of gravity between two objects 𝐹 = 𝐺𝑀𝑚

𝑟2

– investigate the factors that affect the gravitational field strength 𝑔 = 𝐺𝑀

𝑟2

– predict the gravitational field strength at any point in a gravitational field,
including at the surface of a planet

• Investigate the orbital motion of planets and artificial satellites when applying
the relationships between the following quantities:
– gravitational force, centripetal force, centripetal acceleration, mass, orbital

radius, orbital velocity, orbital period
• Investigate the relationship of Kepler’s Laws of Planetary Motion to the forces

acting on, and the total energy of, planets in circular and non-circular orbits
using:
– 𝑣 = 2𝜋𝑟

𝑇

– 𝑟3

𝑇 2 = 𝐺𝑀

4𝜋2
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QUIZ 5

Quiz

Question 1 (7 marks)

A racing driver navigates a circular part of the flat track at 190 kmh−1. He turns
his wheels 30◦ to generate the force required for the turn. The driver and the car
together weigh 880 kg.

(a) 1If the radius of the turn is 850 m, calculate the magnitude of inward friction
force supplied by the car.

(b) 1Calculate the magnitude of total friction force on the tyres.

(c) 2Calculate the car’s angular frequency and period.
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6 HSC PHYSICS MODULE 5 WEEK 4

(d) 3Explain why, when a tight turn is traversed too fast, the car risks skidding to
the outside of the track. In your answer, make reference to different types of
friction and inertia.

Question 2 (3 marks)

Calculate the range of a projectile that is thrown from a height of 20 m and lands
at ground level, having reached a maximum height of 32 m above the ground and
having started with equal vertical and horizontal components of initial velocity.

© 2024 Dr Vasan Specialist Tuition



1 NEWTON’S LAW OF UNIVERSAL GRAVITATION 7

1 Newton’s Law of Universal Gravitation

Sir Isaac Newton (1642–1727) postulated that all matter in the universe (anything
with mass) attracts all other matter in the universe with a force. One observable
manifestation of this is the fact that objects fall down towards the surface of the Earth,
since the Earth attracts everything on it towards its centre of mass. But by considering
the various gravitational interactions between bodies of varying size in the universe,
and building off the work of astronomers before him, Newton reasoned that every
object should be attracting every other object. This includes two humans, two atoms,
and every single pair of objects you can see before you right now. The only reason
those objects don’t fall into each other is that the gravitational force between them is
absolutely minuscule.

Say, then, that we have two objects, A and B. Just as object A attracts object B
with a gravitational force, object B also attracts object A with an equal and opposite
force. In this way, gravitation satisfies Newton’s Third Law of motion as well. The
implication of this is that just as the Earth is pulling you down to the ground, you are
also pulling the Earth up towards you with your gravitational pull – with a force of
the exact same magnitude, no less!

Newton reasoned that the more massive the two objects in question (i.e. the more
matter they contained), the greater would be the force of attraction between them.
Mathematically, if 𝑚1 and 𝑚2 are the two objects’ masses in kg, then:

𝐹 ∝𝑚1 and 𝐹 ∝𝑚2

Furthermore, the closer the objects are to each other, the stronger the force of
attraction, according to an inverse square relationship. Mathematically, if 𝑟 is the
separation between the object’s centres of mass in m, then:

𝐹 ∝ 1
𝑟2

By incorporating a constant of proportionality, the gravitational constant 𝐺 , we can
formulate Newton’s law of universal gravitation (Figure 1):

𝐹 =
𝐺𝑚1𝑚2

𝑟2

where

𝑚1,𝑚2 = masses of two objects (kg),

𝑟 = distance between their centres of mass (m),

and 𝐺 = 6.67𝑥10−11, the gravitational constant (Nm2/kg2).
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𝑚1 𝑚2
𝐹1 𝐹2

𝑟

𝐹1 = 𝐹2 =
𝐺𝑚1𝑚2

𝑟2

Figure 1 Newton’s Law of Universal Gravitation.

The gravitational force is always a force of attraction. When describing the
direction of the force between two objects, you can use the word ‘attractive’ or the
phrases ‘towards the other object’ or ‘towards each other’ all as appropriate designations
of direction – for example, ‘𝐹 = 18.5 N attractive’ or ‘F = 18.5 N towards each other’.

Centre of Mass

It is important to remember that 𝑟 is the distance separating the objects’ centres of
mass, with this latter term referring to the single point inside the object that all its mass
is assumed to be concentrated into.

For most questions, the distance between the two objects given to you can be
assumed to be between their centres of mass. For example, if you are asked to find
the gravitational force between a water bottle and a pen, and you are told they are
2 m apart, you do not need to account for the size of each object in trying to find
exactly where their centres are and add that to the 2 m separation. Just assume their
centres of mass are 2 m apart.

Similarly, if you are told that the Sun and Earth are 1.496 × 1011 m apart, assume
that refers to their centres of mass unless told otherwise.

The exception to this is when an object is at or reasonably close to the surface of
a large celestial body. When asked to find the gravitational attraction on a person
standing on the surface of the Earth, the separation between the person and the Earth
is not zero, it is the distance to the Earth’s centre.

Using common sense, you should generally be able to work out quite easily in a
given question if you need to account for the shape of the object or not in establishing
the value of 𝑟 .
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1 NEWTON’S LAW OF UNIVERSAL GRAVITATION 9

The Gravitational Constant

The gravitational constant 𝐺 is the constant of proportionality in Newton’s law of
universal gravitation. How do we know that it is equal to 6.67 × 10−11?

This is a value that has been experimentally derived and refined over many years.
In the late 1700s, Henry Cavendish conducted an experiment to determine the tiny
deflection caused to a suspended object when placed next to a larger fixed object as
they attract each other by the gravitational force. Modern experimental data allows us
to be certain of the value to 5 decimal places, which – surprisingly – isn’t that high a
certainty in comparison to our knowledge of other physical constants of the universe.

Weight and Gravitational Acceleration
Previously, we have been using a different formula to determine the force on an
object due to gravity, which is the weight formula𝑊 =𝑚𝑔. Although this formula
works well for objects on the surface of a planet, and when we already know the value
for 𝑔, it really doesn’t help us to determine the broader set of gravitational attractions
which occur in the universe – for example the force between two small objects, or
the force between the Earth and the Sun. Furthermore, if we don’t know the value
of 𝑔 on a particular planet, how do we calculate the gravitational force between that
planet and objects on its surface?

This is where Newton’s law of universal gravitation is very powerful. We can
pick any two objects we are interested in, and as long as we know their masses and
separation, we can find the force of gravity that exists between the two.

We can use the universal gravitation formula in combination with the weight
formula (which is just Newton’s Second Law) to derive a formula for the gravitational
acceleration of a celestial body.

Consider the gravitational force acting on a small object, such as a person, by a
much larger body, such as the Earth. Instead of referring to their masses as𝑚1 and𝑚2,
let’s instead call the small mass𝑚 and the big mass 𝑀 . Then the universal gravitational
formula looks as follows:

𝐹 =
𝐺𝑚𝑀

𝑟2

This is a common way to see Newton’s law of universal gravitation written down
when the two objects in consideration are orders of magnitude different in mass. It is
the same formula, just written in such a way as to remind us of the physical situation
we are dealing with.

In the weight formula 𝑊 = 𝑚𝑔, the weight is the gravitational force on the
small object (and, by Newton’s Third Law, also the large object but in the opposite
direction), 𝑚 is the mass of the small object, and 𝑔 is the acceleration due to gravity
due to the large object.
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Equating the two, we get:

𝑊 = 𝐹

𝑚𝑔 =
𝐺𝑚𝑀

𝑟2

𝑔 =
𝐺𝑀

𝑟2

This formula allows us to calculate in ms−2 the gravitational acceleration of a
celestial body at any distance away from its centre of mass. We can see that the heavier
the celestial body is, the stronger its gravitational acceleration is. Also, the further you
are away from its centre of mass, the weaker that acceleration will be. Note that it is
independent of the mass of the small object experiencing that acceleration, exactly as
Galileo predicted in his (supposed) Leaning Tower of Pisa experiments.

Advanced: Gravitational and Inertial Mass

In the derivation above, we cancelled out 𝑚 from each side, saying that they are the
same term representing the mass of the small object. Although this is widely accepted
as obviously correct, there is no logical reason from first principles why this should
be the case.

The 𝑚 in𝑊 =𝑚𝑔 refers to inertial mass. It is the property of an object that links
a force applied on it to the resultant acceleration, i.e. 𝐹 =𝑚𝑎. The higher this number
is, the lower the resultant acceleration caused by a particular force.

The 𝑚 in 𝐺𝑚𝑀

𝑟2
refers to gravitational mass. It is the property of an object that

results in it exerting a gravitational force on every other object with gravitational mass,
just like charge is the property of an object that results in it exerting an electrostatic
force on every other charged object.

Why should the property of an object which causes its gravity necessarily be the
same property which determines what acceleration it will undergo when it encounters
any force? Just because we have referred to them both as mass, are they both the same
thing?

For centuries, scientists were confident without definitive proof that they were
probably the same. We can show experimentally that objects of different masses will
accelerate down at similar rates when falling under the influence of Earth’s gravity.
This idea supports our above derivation, because if we could not cancel out the two
masses, there would be a dependence on mass left over in the formula for gravitational
acceleration. But just because experiments support the idea of the two masses being
the same thing, it doesn’t provide us with the underlying reason why.

It took several hundred years and an innovative thought experiment by Albert
Einstein – yes, an experiment conducted in his head – to actually prove that the
gravitational and inertial masses are identical. This is known as the equivalence
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1 NEWTON’S LAW OF UNIVERSAL GRAVITATION 11

principle and forms the basis of the theory of general relativity, which we will not
be covering in this course.

Questions

Question 1 (2 marks)

A water bottle of mass 200 g and a dumbbell of mass 3 kg are placed on the floor of a
gym, 2 m apart. What is the gravitational force between these objects?

Solution to Question 1

𝐹 =
𝐺𝑚𝑀

𝑟2

=
6.67 × 10−11 × 0.2 × 3

22

= 1 × 10−11 N attractive

Marking Criteria

• Correctly substitutes values into formula (1 mark) and correctly calculates answer (1
mark)

Question 2 (2 marks)

The Sun weighs 1.99 × 1030 kg while the planet Mars weighs 6.42 × 1023 kg. If the
gravitational force between them is 1.64×1021 N, calculate the distance of Mars from
the Sun.

Solution to Question 2

𝐹 =
𝐺𝑚𝑀

𝑟2

1.64 × 1021 =
6.67 × 10−11 × 1.99 × 1030 × 6.42 × 1023

𝑟2

𝑟2 =
6.67 × 10−11 × 1.99 × 1030 × 6.42 × 1023

1.64 × 1021

∴ 𝑟 = 2.28 × 1011 m

© 2024 Dr Vasan Specialist Tuition
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Marking Criteria

• Correctly substitutes values into formula (1 mark) and correctly calculates answer (1
mark)

Question 3 (5 marks)

(a) If the average radius of the Earth is 6371 km, and the mass of the Earth is
6.00 × 1024 kg, calculate the acceleration due to gravity on the Earth’s surface.
Hint: you already know the answer you should be expecting here. (2 marks)

(b) The average radius of the Sun is about 700,000 km, and its mass is 1.99 × 1030

kg. Calculate the acceleration due to gravity on the Sun’s surface. (2 marks)

(c) By what factor would your weight increase if you were to move from the
surface of the Earth to the surface of the Sun? (1 mark)

Solution to Question 3

(a) 𝑔 =
𝐺𝑀

𝑟2

=
6.67 × 10−11 × 6.00 × 1024

63710002

= 9.86 m s−2 downwards

(b) 𝑔 =
𝐺𝑀

𝑟2

=
6.67 × 10−11 × 1.99 × 1030

7000000002

= 270.88 m s−2 downwards

(c) Because mass remains constant, only the value of 𝑔 affects weight force. Since
the Sun’s gravitational acceleration is 270.88

9.86 = 27.47 times greater than that of
the Earth, you would weigh 27.47 times more on the Sun than on the Earth.

Marking Criteria

(a) Correctly substitutes values into formula (1 mark) and correctly calculates answer (1
mark)

(b) Correctly substitutes values into formula (1 mark) and correctly calculates answer (1
mark)

(c) Correctly determines ratio of accelerations (1 mark)

© 2024 Dr Vasan Specialist Tuition



1 NEWTON’S LAW OF UNIVERSAL GRAVITATION 13

Gravitational Fields
Suppose we had an object exerting one of the fundamental forces of nature, such
as the electromagnetic or gravitational forces. There would be an area of influence
around this object where other objects would be subject to its force. This area of
influence is known as the force’s field. For example, a proton has an electric field
around it. If another charged object is in the field, the proton exerts a force on it.
Similarly, all masses have an associated gravitational field, which influences every
other object in its field by the force of gravity. A field is technically infinitely large,
and continuous in space, but if we want to draw one, we obviously can’t fulfil either
of those criteria. So instead, we represent the field using field lines.

In the Preliminary course, we learned how to draw electric and magnetic field
lines around electric monopoles, electric and magnetic dipoles, and electric plates.
The direction of a field line represents the direction that a test particle would move
in if placed at that point in the field. For electric fields, such a test particle is a tiny
positive charge. For gravitational fields, the test particle is a tiny mass.

Recall that field lines are represented according to a set of conventions:

1. A stronger region of the field is indicated by field lines drawn closer together.

2. Because an object cannot move in two different directions at once, two field
lines can never cross each other.

3. Field lines should emanate at 90◦ to the surface of the object creating the field,
and should not penetrate into the object’s interior.

Figure 2 The Earth’s gravitational field. Note that the field lines of a gravitational field
always point inward.

Because the gravitational force is always attractive, unlike the electromagnetic
force, field lines will always go inward towards the object creating the field: a test
mass will always experience an attractive force and move towards the object.

© 2024 Dr Vasan Specialist Tuition
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Factors Influencing Gravitational Acceleration

We calculated in one of the previous examples that the gravitational acceleration of an
object on the Earth’s surface is roughly 9.80 ms−2, and that this value is independent
of what object we are looking at, because the mass of the small object doesn’t figure
into the equation for 𝑔.

However, the value of 𝑔 is actually not the same at all points on the surface of the
Earth. For example, if you were to travel from Alaska to Sri Lanka, you would weigh
0.5% less stepping out of the plane than when you got on board. It is not that your
mass has changed; it is just that the Earth is exerting a weaker force on you in Sri
Lanka than it is in Alaska, and as such the acceleration you feel is lower. For a 100 kg
person, this makes them feel half a kilogram lighter – that’s not insignificant!

The main factors affecting acceleration can be summarised as follows:

Ellipsoidal shape of the Earth The Earth is not a perfect sphere. It is flatter at the
poles and wider at the equator. The rough major axis radius of the at the equator
is 6378 km and its rough minor axis radius at the poles is 6357 km. This 21 km
difference leads to a small but significant difference in 𝑔 when substituting these
radii into the equation for gravitational acceleration - about am 0.7% difference.
As a general rule, the closer your latitude is to the equator, the further you are
from the centre of the Earth, and this slightly reduces 𝑔.

Heterogeneous composition of the Earth Remember that when we calculate 𝑔,
we make the assumption that all of the Earth’s mass is concentrated into its
centre, which is its centre of mass. Although this is fine when looking at large
scale interactions of gravity, such as between the Earth and the Sun, this isn’t
accurate when making calculations at the surface, and it is a complex calculation
to see how each small part of the Earth leads to its own gravitational effect which
all sum together. If you are on a part of the Earth’s surface with dense crust
underneath, such as oceanic crust, there is simply more mass in the line between
your centre and the Earth’s centre, than if you were in a region where the crust
beneath you was less dense, like continental crust. This leads to differences in
the gravitational acceleration you feel in these two regions.

Irregular surface altitudes The Earth is not smooth. There are regions on its surface
which are much below sea level, such as the Mariana trench at almost 11 km
deep, and there are regions much above sea level, such as Mt Everest at almost 9
km high. At these regions, the value for 𝑟 in the calculation for 𝑔 is different,
and so the resultant value of 𝑔 is different. At the top of a mountain, you are a
small amount further away from the Earth’s centre than you would be at sea
level, so there is slightly less gravitational pull. But if you were at the bottom of
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the Mariana trench, you would be closer to the centre and the pull would be
stronger.

Centrifugal effect of the Earth’s rotation The Earth rotates about its central axis.
Because all parts of the Earth need to complete one full rotation together in one
day, it follows that the parts of the Earth further out from the central axis of
rotation have to travel faster, becasue they need to cover a much longer circular
path, than areas closer to the axis of rotation. This means that at the equator,
the Earth is spinning quite fast – about 464 ms−1 – whereas at the North and
South Poles, the Earth is essentially not spinning at all. When you are standing
on the Earth’s surface, just like when you are thrown outwards by inertia when
a car turns fast, you are actually being thrown outwards tangentially to the
Earth’s surface, and this effect is greater where the Earth spins faster. Because
the weight force is still much stronger than this effect, you don’t actually fly
outwards as the Earth spins, but it does detract from the apparent acceleration
due to gravity you feel at the equator versus what you feel at the poles. It is
important to remember that this factor does not influence the calculation of 𝑔
like the previous three factors, but it influences the apparent effect of 𝑔.

So if your goal in life is to break the shot put world record, consider moving to
Sri Lanka – all your projectiles will travel just that little bit further.

© 2024 Dr Vasan Specialist Tuition
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Questions

Question 4 (6 marks)

The summit of Mt Chimborazo in Ecuador is the point on the Earth’s surface furthest
away from the Earth’s centre, at 6384 km. Mt Chimborazo itself rises 6267 m above
sea level.

(a) At 8848 m above sea level, Mt Everest is taller than Mt Chimborazo. Provide a
reason why its summit is not as far away from the Earth’s centre as the summit
of Mt Chimborazo. (1 mark)

(b) Calculate the acceleration due to gravity of the Earth on the summit of Mt
Chimborazo. Assume the mass of the Earth is 5.97 × 1024 kg. (2 marks)

(c) The acceleration due to the Earth’s gravity in Oslo, Norway, is 9.825 ms−2.
How much further would a projectile travel horizontally if it were thrown from
the summit of Mt Chimborazo than if it were thrown from Oslo? Assume the
projectile is launched from the ground and lands on the ground, and is launched
at 10 ms−1 at 45◦ to the horizontal. (3 marks)

Solution to Question 4

(a) Mt Chimborazo is very close to the equator, which is where sea level is furthest
away from the centre of the Earth. Mt Everest is further from the equator, so
even though it is 2 km higher from sea level, it is actually closer to the centre
of the Earth.

(b) 𝑔 =
𝐺𝑀

𝑟2

=
6.67 × 10−11 × 5.97 × 1024

63840002

= 9.77 m s−2 downwards

(c) Both projectiles have the same velocity components, 𝑢𝑥 = 10 cos 45◦ = 7.07
m s−1 and𝑢𝑦 = 10 sin 45◦ = 7.07m s−1. For the time of flight at Mt Chimborazo:

𝑠 = 𝑢𝑡 + 1
2
𝑎𝑡2

0 = 7.07𝑡 + −9.77𝑡2
2

𝑡 =
2 × 7.07
9.77

, (t≠0)

𝑡 = 1.447 . . . s
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1 NEWTON’S LAW OF UNIVERSAL GRAVITATION 17

For the range at Mt Chimborazo:
𝑠𝑥 = 𝑢𝑥𝑡

= 7.07 × 1.447 . . .

= 10.23 m

For the time of flight at Oslo:

𝑠 = 𝑢𝑡 + 1
2
𝑎𝑡2

0 = 7.07𝑡 + −9.825𝑡2
2

𝑡 =
2 × 7.07
9.825

, (t≠0)

= 1.439 . . . s

Thus, for the range at Oslo:
𝑠𝑥 = 𝑢𝑥𝑡

= 7.07 × 1.439 . . .

= 10.18 m

Therefore, the projectile would travel 5 cm further thrown on the summit of
Mt Chimborazo.

Marking Criteria

(a) Recognises Mt Chimborazo must be closer to the equator and bulges out further than
Mt Everest (1 mark)

(b) Correctly substitutes values (1 mark) and calculates correct answer (1 mark)

(c) Calculates range for each location (1 mark each) and then finds the difference as the
final answer (1 mark)

Question 5 (1 marks)

If the Sun and Earth exert the same magnitude of gravitational force on each other
(by Newton’s Third Law), why is the Earth’s motion influenced to a far greater extent
by the Sun than the Sun’s motion is influenced by the Earth?
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Solution to Question 5

Although the Earth and Sun experience the same force, the Earth is so much lighter
that its acceleration is significantly more. Since acceleration determines further
kinematics, the motion of the Earth is much more affected than the motion of the
Sun.

Marking Criteria

• Recognises that acceleration is different although forces are the same (1 mark)

© 2024 Dr Vasan Specialist Tuition
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Fundamental Concepts
Newton’s Law of Universal Gravitation Every object with mass in the universe

attracts every other object with mass by a gravitational force, proportional to
each mass and inversely proportional to the square of the distance between their
centres of mass. The constant of proportionality is 𝐺 , the gravitational constant.
The formula is given by:

𝐹 =
𝐺𝑚1𝑚2

𝑟2

Gravitational acceleration Derived by equating Newton’s Law of Universal
Gravitation with Newton’s Second Law of Motion, and solving for acceleration.
The formula is given by:

𝑔 =
𝐺𝑀

𝑟2

Notably, the acceleration due to gravity exerted by object 1 on object 2 is
independent of the mass of object 2. This is why when objects fall to Earth,
they all experience the same gravitational acceleration independent of their
mass.

Gravitational field A region of influence around a mass in which another mass will
experience its force of gravity. Gravitational fields are represented by field
lines, which are subject to the standard rules of field line representation, in
that they cannot cross, they are perpendicular to the object’s surface, and they
do not extend into the object’s interior. Gravitational field lines always point
inwards, because the force of gravity is always attractive.

Factors influencing the value of 𝑔 The Earth’s surface doesn’t have the same
acceleration due to gravity at all points due to a number of factors. These factors
include the ellipsoid shape of the Earth, the heterogeneity of the composition
of the Earth, the different altitudes of the Earth’s surface due to its geological
features, and finally the variable centrifugal inertial effect of the Earth’s rotation.
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2 Orbital Motion

Because of how massive both bodies are, the Sun attracts the Earth with a very strong
force of gravity. But we know that the Earth isn’t careening in towards the Sun in
response to this force. Instead, the Earth travels around the Sun in a roughly circular
(technically elliptical) path. This occurs because the Earth is not stationary, it has a
velocity through space of about 30 km s−1. From the previous lessons, we know that
when a moving object experiences a force which always points to a common centre,
such as the gravitational force from the Sun, the resultant motion is circular, because
a centripetal force is now in play.

The circular path of a moving object in space under the influence of the
gravitational force of a central body is known as an orbit.

As we will see, we can bring in all our equations from circular motion and use them
to describe orbital motion. We can start with one key observation: the centripetal
force causing an object to orbit around a celestial body is solely comprised by the
gravitational attraction. Therefore:

𝐹𝑐 = 𝐹𝑔

𝑚𝑣2

𝑟
=
𝐺𝑚𝑀

𝑟2

Note that we are making the assumption here that all orbits are circular (Figure 3).
In fact, all orbits in space are elliptical, with the central mass being orbited located at
one of the elliptical foci, but the equations of circular motion are still quite good at
describing orbital mechanics as long as the orbit isn’t too eccentric (or non-circular).

𝑀 𝑚

𝑣

𝑟

Figure 3 The motion of a small object orbiting a large central mass can be thought of as
uniform circular motion if the orbit is assumed to be circular.

Before we continue, we should define the word satellite, which comes up often
in this context. Satellites are bodies that orbits another body, and comprise natural
satellites as well as artificial satellites. Natural satellites are bodies such as asteroids
and moons. Planets are also satellites of the star they orbit. An artificial satellite is a
human-made object that has been placed in orbit around any body. There are quite a
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2 ORBITAL MOTION 21

few artificial satellites currently orbiting the Sun, and as we know, there are thousands
orbiting the Earth, in addition to our lonely single natural satellite.

Orbital Acceleration

The orbital acceleration experienced by a satellite is equal to its centripetal acceleration,
which is also equal to the central body’s acceleration due to gravity 𝑔. Therefore, we
can write:

𝑎orb = 𝑎𝑐 = 𝑔

𝑎orb =
𝑣2

𝑟
=
𝐺𝑀

𝑟2

Orbital Velocity

From the orbital acceleration equation above, we can derive a formula for 𝑣 , the
tangential velocity of the orbiting body, in terms of the mass of the central body and
the radius of the orbit:

𝑣2orb
𝑟

=
𝐺𝑀

𝑟2

𝑣orb =

√︂
𝐺𝑀

𝑟

Thus, we can see that the velocity of an object’s orbit only depends on the body it is
orbiting and how far away it is from that body.

Orbital Period

Recall that the period of circular motion is the time taken to complete a full revolution.
Thus, an orbital period is the time taken for an orbiting body to perform one full
orbit around the central body. For planets, this is known as a year. Just as Earth’s
year is 365 days, a ‘Mars year’ – the time it takes the planet Mars to complete one
revolution around the Sun – is 687 Earth days.

From circular motion, we know we can define the orbital period by dividing the
orbital path length by the speed of the object:

𝑇 =
2𝜋𝑟
𝑣
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By substituting in the formula we derived for orbital velocity, we can derive an
expression for period again purely based on the central body’s mass and distance:

𝑇 =
2𝜋𝑟√︃
𝐺𝑀
𝑟

𝑇 =
2𝜋𝑟 3

2
√
𝐺𝑀

Orbital Radius
The orbital radius is the distance between the centres of mass of the orbiting body
and the central body. It is the distance over which the gravitational force of each
body is exerted on the other. This corresponds to the radius of the path of rotation
from our basic circular motion analysis from previous weeks.

In most questions you encounter, the orbital radius will be given to you in the
question stem. Alternatively, other questions will give you quantities such as the orbital
velocity and the central mass, and ask you to find orbital radius. In this case, you can
just rearrange the orbital velocity formula and solve for 𝑟 . As such, there isn’t really a
standard formula for orbital radius. One such formula could be a rearrangement of
the orbital velocity formula:

𝑟 =
𝐺𝑀

𝑣2

Another such formula results from rearranging the formula for orbital period:

𝑇 =
2𝜋𝑟 3

2
√
𝐺𝑀

𝑇 2 =
4𝜋2𝑟3

𝐺𝑀

𝑟3 =
𝐺𝑀𝑇 2

4𝜋2

𝑟3

𝑇 2 =
𝐺𝑀

4𝜋2

This is one of Kepler’s Laws of Planetary Motion, which we will examine in the next
section.
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Questions

Question 6 (5 marks)

The Moon orbits the Earth at an average distance of 385,000 km. The mass of the
Earth is 6.00 × 1024 kg.

(a) Calculate the Moon’s orbital velocity. (1 mark)

(b) Calculate how long it takes the Moon to orbit the Earth, in Earth days. (2
marks)

(c) A ‘Moon day’, or the time taken for the Moon to complete one rotation about its
own axis, is 27.46 Earth days long. Using your answer from part (b), what does
the length of the Moon day imply about the visibility of the Moon’s surface
from Earth? (2 marks)

Solution to Question 6

(a)
𝑣 =

√︂
𝐺𝑀

𝑟

=

√︂
6.67 × 10−11 × 6.00 × 1024

385000000
= 1019.5 m s−1

(b) 𝑇 =
2𝜋𝑟
𝑣

=
2𝜋 × 385000000

1019.5
= 2372757.57 . . . s

Dividing by 24 × 60 × 60 seconds in a day, we get 27.46 Earth days.

(c) We have just calculated that the Moon takes the same amount of time to orbit
the Earth that it does to rotate on its own axis. This means that as the Moon
orbits, it turns in a way that we always see the same side of it. There is a far side
of the Moon which we never see from Earth because it is always rotating away
from us.
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Marking Criteria

(a) Calculates velocity correctly (1 mark)

(b) Correct calculation of period in seconds (1 mark), then converts this to a number of
days (1 mark).

(c) Identifies that the Moon’s orbit and Moon’s rotation take the same amount of time (1
mark), and recognises this means the same side of the Moon always faces the Earth
during its orbit (1 mark)

Question 7 (3 marks)

The Earth takes 365.25 days to orbit the Sun, orbiting at a distance of 1 astronomical
unit, or 149,800,000 km. Calculate:

(a) The Earth’s orbital velocity. (1 mark)

(b) The mass of the Sun. (1 mark)

(c) The acceleration due to the Sun’s gravity as felt by the Earth. (1 mark)

Solution to Question 7

(a) 𝑣 =
2𝜋𝑟
𝑇

𝑣 =
2𝜋 × 149800000000
365.25 × 24 × 60 × 60

𝑣 = 29825.5 m s−1

(b)
𝑣 =

√︂
𝐺𝑀

𝑟

𝑀 =
𝑣2𝑟

𝐺

=
29825.52 × 149800000000

6.67 × 10−11

= 1.998 × 1030 kg

(c) 𝑔 =
𝐺𝑀

𝑟2

=
6.67 × 10−11 × 1.998 × 1030

1498000000002

= 5.94 × 10−3 ms−2 towards the Sun
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Marking Criteria

(a) Calculates answer correctly (1 mark)

(b) Calculates answer correctly (1 mark)

(c) Calculates answer correctly (1 mark)
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Kepler’s Laws of Planetary Motion
Johannes Kepler (1571–1630) was a German astronomer and an assistant of Danish
astronomer Tycho Brahe, one of the great observational scientists of history. Kepler
studied the voluminous and meticulous data recorded by Brahe during his life, and
formulated three laws of planetary motion which we still use today. Kepler lived
before Newton, so these laws were purely based on observational data and were not
based on any sort of physical theory of gravity. In fact, Kepler’s laws proved to be
a great influence on Newton’s formulation of his theory of Universal Gravitation.
Although named for the motion of planets, Kepler’s laws hold true for all orbiting
bodies.

Kepler’s three Laws of Planetary Motion are as follows:

1. All planets undertake elliptical orbits, with the central body (star) at one of the
foci of the ellipse.

2. The sectors subtended by arcs of a particular planet’s orbit, traversed over equal
periods of time, will have equal areas.

3. For all planets orbiting the same central mass 𝑀 , the cube of the (major) radius
of orbit is proportional to the square of the period of orbit, given by the formula
𝑟3

𝑇 2 = 𝐺𝑀

4𝜋2 .

Kepler’s First Law reflects a fundamental observation of orbits in the universe.
Some orbits are very elliptical (high eccentricity), whereas others, such as the orbit of
the Earth, are almost circular (eccentricity near zero). Pluto’s orbit is quite eccentric,
which was one of the reasons it was removed from the list of planets in our Solar
System. This means that Pluto’s orbit is a very deformed ellipse, so its distance from
the Sun at the point where it is closest in its orbit (perihelion) and the distance from
the Sun where it is furthest (aphelion) are very different lengths. By contrast, the
perihelion and aphelion of the Earth are very similar in length. That being said, the
Earth still doesn’t have a perfectly circular orbit. It is actually closer to the Sun at the
time of the year where the Southern Hemisphere experiences summer, and is slightly
further away from the Sun during the Northern Hemisphere’s summer. This makes
no appreciable difference to temperatures experienced during those seasons, however.

Kepler’s Second Law is a consequence of the relationship between orbital radius

and velocity, 𝑣 =

√︃
𝐺𝑀
𝑟

. When the orbiting body is further away in its orbit from the
central mass, it travels slower. In other words, although its distance from the central
mass is greater, it does not traverse as great an arc in a given amount of time because
it moves slower. As such, the sector it subtends with an arc of its motion is thin and
long. When the orbiting mass is closer to the central mass, it travels faster, so in the
same amount of time it traverses a longer arc. However, the radius of its orbit is lower,
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Figure 4 Kepler’s Second Law states that an object in an elliptical orbit will sweep out sectors
of equal area, subtended at the central body, over equal periods of time.

so the sectors it sweeps out are shorter but thicker. The areas of each sector end up
being the same.

As for Kepler’s Third Law, we have already derived it earlier by rearranging the
formula for orbital period. An easier way to derive this law, however, is to rearrange
the basic formula for orbital period with 𝑣 as the subject:

𝑇 =
2𝜋𝑟
𝑣

𝑣 =
2𝜋𝑟
𝑇

Then we substitute this into the formula for orbital velocity:

𝑣 =

√︂
𝐺𝑀

𝑟

2𝜋𝑟
𝑇

=

√︂
𝐺𝑀

𝑟

4𝜋2𝑟2

𝑇 2 =
𝐺𝑀

𝑟

𝑟3

𝑇 2 =
𝐺𝑀

4𝜋2

Energy and Kepler’s Laws

Kepler’s Laws of Planetary Motion can be investigated from the perspective of the
total energy in orbiting systems. To look at this in more detail, we need to look
at a new definition of gravitational potential energy, and the mechanical energy of
satellites. We will do this in the next lesson, and therefore revisit Kepler’s Laws in
relation to energy at that time.
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Fundamental Concepts
Orbit The closed-loop path taken by an object moving in space subject to a

gravitational force exerted by a large central mass. Orbits can be approximated
as circular, and as such we can rely on our understanding of circular motion and
use those formulas in conjunction with our gravitational formulas to describe
the orbital behaviour of objects in the universe.

Satellite A natural satellite, which is any astronomical body orbiting another
astronomical body, or an artificial satellite, which are human-made objects
placed in orbit around a variety of objects in our Solar System.

Centripetal force in orbits The centripetal force keeping an object in orbit is the
force of gravity, given by Newton’s law of universal gravitation 𝐹 = 𝐺𝑚𝑀

𝑟2
.

Centripetal acceleration of orbiting bodies This is the acceleration due to gravity
from the central object, given by 𝑔 = 𝐺𝑀

𝑟2
.

Orbital velocity The orbital velocity of an object undergoing an orbit at a distance

𝑟 from a central body of mass 𝑀 is given by 𝑣 =

√︃
𝐺𝑀
𝑟

.

Orbital period The orbital period is given by 𝑇 = 2𝜋𝑟
𝑣

. We can take this one step

further by substituting the formula for orbital velocity to obtain 𝑇 = 2𝜋𝑟
3
2√

𝐺𝑀
. It is

not necessary to memorise this second equation at all – you could simply work
up to it if a question in an exam required it of you.

Orbital radius The distance between the satellite’s centre of mass and the centre of
mass of the body it is orbiting.

Kepler’s Laws of Planetary Motion Kepler’s laws can be used to explain and make
predictions about the orbits not only of planets, but also of all satellites in the
universe. Kepler’s three laws are as follows:

1. All planets undertake elliptical orbits, with the central body (star) at one
of the foci of the ellipse.

2. The sectors subtended by arcs of a particular planet’s orbit, traversed over
equal periods of time, will have equal areas.

3. For all planets orbiting the same central mass 𝑀 , the cube of the (major)
radius of orbit is proportional to the square of the period of orbit, given
by the formula 𝑟3

𝑇 2 = 𝐺𝑀

4𝜋2 .
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Questions

Question 8 (3 marks)

A satellite is currently orbiting the Earth at an altitude above the surface of 400 km,
and completes one full orbit every 90 minutes. The satellite then fires its thrusters to
move up to an orbital altitude of 1000 km. Given that the Earth has an average radius
of 6371 km, what is the satellite’s new period of rotation in hours?

Solution to Question 8

We need to remember here that orbital altitude is not orbital radius, we need to add
the radius of the Earth each time. Given that at each orbital radius, the satellite has
the same value of 𝐺𝑀

4𝜋2 because it is still orbiting the Earth, we can just set up Kepler’s
Third Law as a set of two ratios which are equal. Furthermore, we can just use km
and hours because we are comparing ratios and not using any standard constants:

𝑟3
𝑜𝑙𝑑

𝑇𝑜𝑙𝑑2
=
𝑟3𝑛𝑒𝑤

𝑇 2
𝑛𝑒𝑤

67713

1.52
=
73713

𝑇 2
𝑛𝑒𝑤

𝑇 2
𝑛𝑒𝑤 = 2.9027 . . .

𝑇𝑛𝑒𝑤 = 1.70 hours

Marking Criteria

• Sets up Kepler’s Third Law as ratios (1 mark) Note: The student could use the initial
period and radius to solve for the Earth’s mass and do this without ratios, but it is
longer. The student is not allowed to assume the mass of the Earth.

• Correctly substitutes values (1 mark)

• Calculates final answer correctly (1 mark)

Question 9 (8 marks)

The four Galilean moons of Jupiter are Io, Europa, Ganymede and Callisto. Their
discovery was instrumental in disproving the geocentric model of the universe. Io,
Europa and Ganymede have their orbital periods in a ratio of 1 : 2 : 4.

(a) What is the ratio of the orbital radii of Io, Europa and Ganymede in that order?
(2 marks)

(b) If Europa’s orbital radius is 670,000 km, calculate the orbital radii of Io and
Ganymede in kilometres. (2 marks)

© 2024 Dr Vasan Specialist Tuition



30 HSC PHYSICS MODULE 5 WEEK 4

(c) If Io’s orbital period is 1.77 Earth days, calculate the mass of Jupiter. (Assume
one Earth day = 24 hours.) (2 marks)

(d) If Callisto’s orbital radius is 1,833,000 km on average, calculate the its orbital
period in Earth days. (2 marks)

Solution to Question 9

(a) Because all moons orbit the same central mass (Jupiter), 𝐺𝑀

4𝜋2 is identical for all
of them. Therefore, they all have the same 𝑟3

𝑇 2 value in their orbital paths.

𝑟3
𝐼

𝑇 2
𝐼

=
𝑟3
𝐸

𝑇 2
𝐸

=
𝑟3
𝐺

𝑇 2
𝐺

𝑟3
𝐼

1
=
𝑟3
𝐸

4
=
𝑟3
𝐺

16
𝑟𝐼

1
=

𝑟𝐸

1.587
=

𝑟𝐺

2.520

Therefore their orbital radii are in the ratio 1 : 1.587 : 2.520.

(b) Using the ratios above:

𝑟𝐼 =
670000
1.587

= 422180 km

and 𝑟𝐺 = 670000 × 2.520
1.587

= 1063894 km

(c) 𝑟3

𝑇 2 =
𝐺𝑀

4𝜋2

𝑀 =
4𝜋2𝑟3

𝐺𝑇 2

=
4𝜋2 × 4221800003

6.67 × 10−11 × (1.77 × 24 × 60 × 60)2

= 1.90 × 1027 kg

(d) 𝑟3

𝑇 2 =
𝐺𝑀

4𝜋2

𝑇 2 =
4𝜋2𝑟3

𝐺𝑀

𝑇 2 =
4𝜋2 × 18330000003

6.67 × 10−11 × 1.90 × 1027

𝑇 2 = 1.9185 . . . × 1012

∴ 𝑇 = 1385108.672 . . . s

Dividing by 24 × 60 × 60 seconds in an Earth day, we get a period of 16.03
Earth days.
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Marking Criteria

(a) Sets up Kepler’s Third Law as ratios (1 mark), calculates correct radii ratios (1 mark)

(b) Calculates radius of Io and Ganymede correctly (1 mark each)

(c) Substitutes correctly into formula (1 mark), calculates correct mass (1 mark)

(d) Calculates correct period in seconds (1 mark), calculates correct period in days (1 mark)
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Quiz Solutions

Question 1

(a)
𝐹𝑐 =

𝑚𝑣2

𝑟

=
880 × ( 1903.6 )

2

850
= 2883.8 N

(b) The 30◦ inward turn creates a component of friction in line with the car’s
motion and a component perpendicular to it. We know the perpendicular
component is 2883.8 N. Therefore, the total friction is 2883.8

sin 30◦ = 5767.6 N.

(c) Angular frequency:
𝜔 =

𝑣

𝑟

=

190
3.6
850

= 0.062 s−1

For period, we can use 𝜔 = 2𝜋
𝑇

:

𝑇 =
2𝜋

0.062
= 101.2 s

(d) When a tight turn is made quickly, 𝑣 is large and 𝑟 is small. This makes
𝐹𝑐 =

𝑚𝑣2

𝑟
very large, and this is all supplied by friction between the tyres and

the road. Because wheels undergo static friction with the road at their point
of contact when rotating, and static friction is given by 𝐹𝑓 <= 𝜇𝑠𝑁 , there is a
limit of friction force at which static friction is exceeded. After this, the wheel
experiences kinetic friction, and starts moving across the road instead of rotating,
i.e. sliding in the direction the car is travelling, which is tangential. As the
centripetal effect of friction at this point is lost, the car skids in a tangent due to
its inertia, which acts centrifugally, and travels outwards from the track.

Question 2

We can use the maximum height to find the initial vertical velocity. The maximum
height is a displacement of 12 m, not 32 m.

𝑣2 = 𝑢2 + 2𝑎𝑠

02 = 𝑢2𝑦 + 2 × −9.80 × 12

𝑢𝑦 = 15.34 m s−1
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This means that 𝑢𝑥 = 15.34 m s−1 too. Now we can use 𝑢𝑦 to find the time of flight:

𝑠 = 𝑢𝑡 + 1
2
𝑎𝑡2

−20 = 15.34 × 𝑡 − 4.9 × 𝑡2

4.9𝑡2 − 15.34𝑡 − 20 = 0

Using the quadratic equation and taking 𝑡 > 0, we get:

𝑡 =
15.34 +

√
15.342 − 4 × 4.9 × −20

9.8
= 4.12 s

Now we can find the range:

𝑠𝑥 = 𝑢𝑥𝑡

= 15.34 × 4.12

= 63.2 m
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